A vanishing theorem for the homology of discrete subgroups

نویسندگان

  • Chris Connell
  • Benson Farb
  • D. B. McReynolds
چکیده

For any discrete, torsion-free subgroup Γ of Sp(n, 1) (resp. F−20 4 ) with no parabolic elements, we prove that H4n−1(Γ;V ) = 0 (resp. Hi(Γ;V ) = 0 for i = 13, 14, 15) for any Γ–module V . The main technical advance is a new bound on the p–Jacobian of the barycenter map of Besson–Courtois–Gallot. We also apply this estimate to obtain an inequality between the critical exponent and homological dimension of Γ, improving on work of M. Kapovich.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring, $fa$ anideal of $R$ and $mathcal{D}(R)$ denote the derived category of$R$-modules. For any homologically bounded complex $X$, we conjecture that$sup {bf L}Lambda^{fa}(X)leq$ mag$_RX$. We prove thisin several cases. This generalize the main result of Hatamkhani and Divaani-Aazar cite{HD} for complexes.

متن کامل

Vanishing of Ext-Functors and Faltings’ Annihilator Theorem for relative Cohen-Macaulay modules

et  be a commutative Noetherian ring,  and  two ideals of  and  a finite -module. In this paper, we have studied the vanishing and relative Cohen-Macaulyness of the functor for relative Cohen-Macauly filtered modules with respect to the ideal  (RCMF). We have shown that the for relative Cohen-Macaulay modules holds for any relative Cohen-Macauly module with respect to  with ........

متن کامل

Generalized Local Homology Modules of Complexes

The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...

متن کامل

A vanishing theorem for the homology of discrete subgroups of Sp(n, 1) and F4-20

For any discrete, torsion-free subgroup Γ of Sp(n, 1) (resp. F−20 4 ) with no parabolic elements, we prove that H4n−1(Γ;V ) = 0 (resp. Hi(Γ;V ) = 0 for i = 13, 14, 15) for any Γ–module V . The main technical advance is a new bound on the p–Jacobian of the barycenter map of Besson–Courtois–Gallot. We also apply this estimate to obtain an inequality between the critical exponent and homological d...

متن کامل

A FINITENESS THEOREM FOR ZERO-CYCLES OVER p-ADIC FIELDS

Contents Introduction 2 1. Homology theory and cycle map 6 2. Kato homology 12 3. Vanishing theorem 16 4. Bertini theorem over a discrete valuation ring 20 5. Surjectivity of cycle map 23 6. Blow-up formula 25 7. A moving lemma 28 8. Proof of main theorem 30 9. Applications of main theorem 33 Appendix A.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015